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Abstract. A numerical method is developed for simulating the flow of two superposed liquid layers in a two-
dimensional channel confined between two parallel plane walls, in the presence of an insoluble surfactant. The
algorithm combines Peskin’s immersed-interface method with the diffuse-interface approximation, wherein the step
discontinuity in the fluid properties is replaced by a transition zone defined in terms of a mollifying function. A
finite-difference method is implemented for integrating the generalized Navier–Stokes equation incorporating the
jump in the interfacial traction, and a finite-volume method is implemented for solving the surfactant transport
equation over the evolving interface. The accuracy of the overall scheme is confirmed by successfully comparing
the numerical results with the predictions of linear stability analysis and numerical simulations based on a bound-
ary-element method for Stokes flow. Results for selected case studies suggest that inertial effects have a mild effect
on the growth rate of the surfactant-induced Marangoni instability.
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1. Introduction

Linear stability analysis of two-layer channel flow with fluids of equal densities but different
viscosities reveals that, in the absence of surfactants, the flow can be unstable provided that
the Reynolds number is non-infinitesimal (e.g., [1]). Two modes of instability have been iden-
tified: the first mode represents a shear-flow instability associated with the global structure of
the shear flow, which arises at high Reynolds numbers irrespective of the relative fluid viscos-
ities; the second mode describes Yih’s [2] instability associated with the discontinuity in the
shear rate due to the viscosity jump across the interface, which arises at arbitrarily small, but
not precisely zero, Reynolds numbers.

Frenkel and Halpern [3,4] recently pointed out that an insoluble surfactant may have a
further destabilizing influence by promoting the growth of interfacial waves in Stokes flow,
even for fluids of equal viscosities. Conversely, a shear flow may destabilize an otherwise sta-
ble interface populated by surfactants. Blyth and Pozrikidis [5] reconsidered the linear stability
problem in a broader framework that accounts for the effect of gravity and takes into con-
sideration the surfactant diffusivity, and performed numerical simulations of the non-linear
motion under the auspices of the lubrication approximation and in the context of Stokes flow.
Their results confirmed the onset, and illustrated the non-linear stages of the instability.

Linear stability analysis for Stokes flow shows that the instability of the two-layer flow
is determined by the properly non-dimensionalized shear rate of the unperturbed flow evalu-
ated at the lower or upper side of the interface, denoted by s (see also [6]). In particular, the
normal-mode analysis reveals the existence of two possible modes. When s = 0, both modes
are stable, independent of the overall velocity profile; on the other hand, when s is non-zero,
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one of the modes associated with Marangoni tractions due to surfactant nonuniformities may
become unstable in a certain range of layer thickness and viscosity ratios, and for a certain
range of wavenumbers. The prominence of the interfacial shear rate is consistent with physical
intuition, suggesting that small enough deflections of the interface only feel the effect of the
shear term in the local undisturbed velocity profile, as it appears in the surfactant transport
equation.

The classical analysis of Yih, its subsequent extensions and refinements, and the recent
findings of Frenkel, Halpern, Blyth and Pozrikidis reveal that three modes of instability are
possible in the presence of an insoluble surfactant: the common high-Reynolds-number shear-
flow instability, the finite-Reynolds-number Yih instability, and the Stokes-flow Marangoni
instability. Under appropriate conditions, all three modes may arise, favoring the simultaneous
growth of disturbances with different wavenumbers representing the respective most unstable
modes.

Several authors have studied by numerical simulation the non-linear stages of the two-layer
instability in a horizontal or inclined channel, in the absence of surfactants. Pozrikidis [7,
8] performed boundary-integral simulations of the two-layer Couette, Poiseuille, and grav-
ity-driven flow at vanishing Reynolds number, and Coward et al. [9] and Li et al. [10]
performed simulations based on the volume-of-fluid (VOF) method at low and moderate
Reynolds numbers. The computations of Li et al. [10] confirmed the destabilizing influence
of inertia, and revealed the occurrence of wave steepening and subsequent saturation due
to finite-amplitude interactions. Similar simulations for selected case-studies were presented
by Yiu and Chen [11], Zaleski et al. [12], Yecko and Zaleski [13], Tryggvason and Unverdi
[14], and Zhang et al. [15] using the VOF, as well as the so-called “front tracking method”,
the latter being essentially Peskin’s immersed-interface method discussed in Section 3 (e.g.,
[16]).

In this article, the effect of fluid inertia on the Marangoni instability of the two-layer Cou-
ette flow is investigated by numerical simulation. The numerical method combines Peskin’s
immersed-interface formulation, the diffuse-interfaceapproximation, a variant of Chorin’s pro-
jection method, and a finite-volume method for integrating the convection-diffusion equation
governing surfactant transport. Two novel aspects of the algorithm are the computation of
the mollifying function used to smear discontinuities in the physical properties of the fluids
based on an integral identity, and the restatement of the effective force due to viscosity vari-
ations in terms of the viscosity gradient and the vorticity. The numerical results will suggest
that the Marangoni instability persists at non-zero Reynolds numbers. In a companion article
[6], a formal normal-mode linear stability analysis of the two-layer flow is undertaken, and the
numerical methods developed in this article are applied to illustrate the non-linear evolution
of exponentially growing perturbations consisting of two companion normal modes.

2. Problem statement

We consider the flow of two adjacent liquid layers in a horizontal channel confined between
two parallel plane walls located at y =±h, as illustrated in Figure 1, and label the lower and
upper fluid using, respectively, the indices 1 and 2. The lower and upper channel walls move
parallel to themselves with velocities U1 and U2, generating a shear-driven flow that can be
superposed on a pressure-driven flow induced by a specified streamwise pressure gradient. The
interface is occupied by an insoluble surfactant with surface concentration �, which is con-
vected and diffuses over the interface, but not into the bulk of the fluids, to alter the surface
tension, γ . When the interface is flat and the surfactant concentration is uniform, we obtain



Effect of inertia on the Marangoni instability of two-layer channel flow, Part I 313

unidirectional flow with a piecewise linear-parabolic velocity profile. Our present interest lies
in computing the evolution of the interface, and thereby assessing the stability of the two-
layer flow, subject to periodic perturbations with wavelength L.

To describe the two-dimensional flow in the xy-plane, we introduce the generalized Na-
vier–Stokes equation incorporating viscosity and density differences, as well as the jump in
the traction across the interface due to the surface tension,

ρ
(∂u

∂t
+u ·∇u

)
=−∇p +2∇ · (µE)−

∫
I

D2(x −x′)�f(x′)dl(x′), (2.1)

where u is the fluid velocity, p is the pressure, ρ is the density, µ is the viscosity, E ≡
(1/2)(∇u+∇uT ) is the rate-of-deformation tensor, D2 is Dirac’s delta function in the xy-plane
with dimensions of inverse squared length, and l is the arclength along the interface, which is
denoted by I (e.g., [17,18]). The expression inside the integral on the right-hand side of (2.1)
involves the traction discontinuity across the interface, defined as

�f ≡ (σ (1) −σ (2)) ·n, (2.2)

where σ is the Newtonian stress tensor, and n is the unit normal vector pointing into the
lower fluid labeled 1, as illustrated in Figure 1. An interfacial force balance requires

�f =−∂(γ t)
∂l

=γ κ n − ∂γ

∂l
t, (2.3)

where γ is the position-dependent surface tension, t is the unit tangent vector pointing in the
direction of increasing arclength l, and κ is the curvature of the interface in the xy-plane,
reckoned to be positive when the interface is upward parabolic; with reference to Figure 1,
κ =−n ·dt/dl.

The evolution of the surfactant concentration is governed by the convection–diffusion
equation

d�

dt
+ ∂(ut �)

∂l
−w

∂�

∂l
=−� κ un +Ds

∂2�

∂l2
, (2.4)

where ut = u · t and un = u · n are the interfacial velocities in the directions of the tangential
and normal vectors, and Ds is the surface surfactant diffusivity (e.g., [19,20]). The derivative
d/dt on the left-hand side of (2.4) expresses the rate of change of a variable following the

Figure 1. Schematic illustration of two-layer Couette–Poiseuille flow in a horizontal channel confined between two
parallel plane walls moving parallel to themselves with velocities U1 and U2.
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motion of interfacial nodes moving with the component of the fluid velocity normal to the
interface and with an arbitrary tangential velocity w(l). If w=0, the nodes reduce to marker
points moving normal to the interface, whereas, if w = ut , the nodes reduce to Lagrangian
point particles moving with the local fluid velocity.

When the surfactant concentration is well below the saturation level, a linear relationship
may be assumed between the surface tension and the surfactant concentration according to
Gibbs’ law, γc − γ =�RT , where R is the ideal gas constant, T is the absolute temperature,
and γc is the surface tension of a clean interface which is devoid of surfactants (e.g., [1,21]).
Rearranging, we obtain the linear surface equation of state

γ =γc

(
1−β

�

�0

)
, (2.5)

where β = �0RT/γc is a dimensionless coefficient related to the surface elasticity by E =
γcβ/�0, and �0 is a reference surfactant concentration corresponding to the surface tension
γ0 = γc (1 −β). The importance of the surfactant on the interfacial dynamics is expressed by
the dimensionless Marangoni number

Ma≡ E�0

γ0
= β

1−β
, (2.6)

defined such that ∂γ /∂�=−Maγ0/�0. This relation and the linear law (2.5) may also be used
to describe small perturbations from the base concentration, �0, with the understanding that
the Marangoni number and associated coefficient β are no longer physiochemical constants,
but express instead the surface elasticity as determined by the current conditions.

3. Numerical method

In the diffuse-interface approximation, the discontinuous density and viscosity fields are
replaced by smoothed distributions defined in terms of a mollifying function c(x, y), which
takes the value of zero in the bulk of the lower layer, the value of unity in the bulk of the
upper layer, and undergoes a gradual transition across the interface. The mollified viscosity
field is described as

µ(x)=µ1 + (µ2 −µ1) c(x), (3.1)

and the density is given by a corresponding expression.
In previous implementations of the immersed interface method, the mollifying function

was computed on the basis of the following exact integral representation for the gradient,

∇c(x)=−
∫

I

D2(x −x′)n(x′)dl(x′). (3.2)

Smoothing the delta function as will be discussed in Section 3.3, and taking the divergence of
the resulting equation, we derive a Poisson equation for c. The forcing term is the divergence
of a nearly-singular vector field distributed along the interface (e.g., [17]). The solution can
be found using a finite-difference method on the same grid used for solving the equation of
motion.

In the present implementation, the mollifying function is computed by a new method that
is independent of the domain discretization adopted for solving the hydrodynamics, based on
the integral representation

c(x)=1− 1
c1

(∫
Ip

n(x′) ·∇′Gδ(x′,x)dl(x′)+ c2

)
, (3.3)
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where Ip is one period of the interface, and ∇′ is the gradient operating with respect to x′.
The parameters c1 and c2 are adjusted to ensure that c(x, y) reaches a minimum of 0 and a
maximum of 1, respectively, on the lower or upper wall. The kernel Gδ(x′,x) is a modifica-
tion of the periodic Neumann function of Laplace’s equation in two dimensions whose nor-
mal derivative vanishes over the upper wall located at y =h, given by

Gδ(x′,x)=− 1
4π

log
cosh[k(y′ −y)]− cos[k(x′ −x)]+ δ2

cosh[k(y′ −2h+y)]− cos[k(x′ −x)]+ δ2
, (3.4)

where k=2π/L is the wavenumber, and δ is a numerical dimensionless parameter determining
the spreading thickness of the interfacial layer, scaled with respect to the wavelength L. When
δ =0, the mollifying function c(x, y) undergoes a step discontinuity across the interface.

In the numerical method, the line integral over the interface on the right-hand side of (3.3)
is evaluated using the trapezoidal rule with eight divisions over individual interfacial cubic-
spline segments, as will be discussed in Section 3.1. The gradient of the mollifying function
is computed numerically by central difference approximations. In the numerical simulations
based on a finite-difference scheme discussed later in this section, the spreading parameter is
set to δ =0·5k �x, where �x is the spacing of a finite-difference grid in the streamwise direc-
tion. Figure 2(a) shows a typical graph of the mollifying function over one period of the flow,
for L = 2h, and smearing parameter δ = 0·5 k �x. In this figure, the separation between two
adjacent grid lines is �x =�y =L/64=h/32; as expected, the transition layer across the inter-
face occupies approximately four cells.

The method for computing the mollifying function described in this section can be read-
ily generalized to other two- and three-dimensional flow configurations by a straightforward
substitution for the Green’s function. Consider, for example,two-dimensional flow in a chan-
nel containing a periodic array of drops or bubbles separated by the distance L (e.g., [17]).
In this case, the mollifying function can be computed from the integral representation

c(x, y)=− 1
c1

(∫
C

n(x′) ·∇Gδ(x′ −x)dl(x′)+ c2

)
, (3.5)

where C is the interface of one drop, n is the unit vector normal to the interface pointing into
the suspending fluid,

Gδ(x′ −x)=− 1
4π

log
[

cosh[k(y′ −y)]− cos[k(x′ −x)]+ δ2
]

(3.6)

is the desingularized, singly periodic Green’s function of Laplace’s equation in the xy-plane,
and k=2π/L is the wavenumber. The parameters c1 and c2 are adjusted to ensure that c(x, y)

reaches a minimum value of 0 far from drop interfaces, and a maximum value of 1 near the
center of each drop. Figure 2(b) shows a typical graph of the mollifying function over two
periods for smearing parameter δ =0·5k �x.

3.1. Interface representation

In the numerical implementation, one period of the interface is described by NI interfacial
nodes, denoted as xk, k = 1, . . . ,NI , shown as circles in Figure 3. The shape of the interface
is then reconstructed using cubic-spline interpolation with periodic boundary conditions for
the first and second derivatives, and is described as x(lp), y(lp). At the nodes, the interpo-
lation variable lp is identified with the current length of the polygonal line connecting adja-
cent nodes and measured from the first node. The solution of the nearly tridiagonal system
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Figure 2. Graph of the mollifying function for (a) a two-layer channel flow with a sinusoidal interface of wavelength
L=4h, (b) flow in a channel containing a periodic array of drops. In both cases, the smearing parameter is set to
δ =0·5k �x, where �x is the horizontal grid spacing.

of algebraic equations for the cubic-spline coefficients is found efficiently using a modifica-
tion of Thomas’s algorithm (e.g., [22]). After the interpolation has been concluded, the nor-
mal and tangential vectors are computed using standard formulae of differential geometry,
and the curvature of the interface in the xy-plane is calculated using the formula

κ =− x′′y′ −y′′x′

(x′2 +y′2)3/2
, (3.7)

where a prime denotes a derivative with respect to lp.
To ensure adequate spatial resolution and an even point distribution along the interface

at all times, the interfacial nodes are redistributed after each time step so that the arc length
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Figure 3. The interface is reconstructed by cubic-spline interpolation based on adaptively distributed interfacial
nodes, shown as circles.

between the adjacent nodes k and k + 1, denoted as �lk ≡ lk+1 − lk, lies within two specified
bounds, �min <�lk <�max. In the numerical computations presented in this article, �min was
set to a value in the range 0·5�x – 1·5�x, while �max was set to 2·0�x. These choices ensure
that (a) the interfacial nodes are not crowded inside a grid cell, (b) the projection of the last
term on the left-hand side of (2.1) onto the grid yields a smoothly varying field, as will be dis-
cussed in Section 3.2, and (c) refining the grid size enforces a higher spatial resolution for the
interface. In addition, the aperture angle associated with each node, �θk ≡κk(�lk−1 +�lk), is
required to be less than a specified threshold, where κk is the curvature of the interface at the
kth node. If the node separation �lk is too small, nodes k and k+1 are removed and replaced
by a midway node, provided that the new point distribution is consistent with the aforemen-
tioned criteria on the maximum point separation and aperture angle. When new interfacial
nodes are introduced, their position and the local surfactant concentration are computed by
cubic-spline interpolation.

3.2. Finite-difference method

Having smoothed the physical properties of the fluids across an artificial interfacial transition
zone, we use the continuity equation to recast the generalized equation of motion (2.1) into
the form

ρ
∂u
∂t

+ρ (u − 2
ρ

∇µ) ·∇u =−∇p +µ∇2u +∇µ×ω−
∫

I

D2(x −x′)�f(x′)dl(x′),
(3.8)

where ω≡∇ ×u is the vorticity. It is worth noting that the third term on the right-hand side
of (3.8) contributes a term that is tangential to the interface.

In the immersed-interface method (IIM) inspired by Peskin’s immersed-boundary method
(IBM) [24] and coined “front tracking” by subsequent authors, the integral on the right-hand
side of the generalized equation of motion (3.8) is approximated by the trapezoidal rule, set-
ting

∫
I

D2(x −x′)�f dl(x′)�
NI∑
k=1

D2(x −xk)Fk, (3.9)
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where

Fk ≡
∫

Ek

�f dl(x′), (3.10)

and Ek is an interfacial element associated with the kth node, enclosed by the dashed lines in
Figure 3. Summation is implied over the infinite repetition of periodic images of the interfa-
cial elements on the right-hand side of (3.9).

To compute the nodal force Fk, we may apply the trapezoidal rule, obtaining

Fk =�fk
lk+1 − lk−1

2
, (3.11)

where �fk is the jump in the interfacial traction evaluated at the kth node. The Marangoni
traction expressed by the second term on the right-hand side of (2.3) can be evaluated
from the cubic-spline interpolation with respect to the polygonal arc length lp as ∂γ /∂l =
(∂γ /∂lp) (∂lp/∂l). An alternative method based on the middle expression in (2.3) is imple-
mented by the approximation

Fk =−
( xk+1 −xk

|xk+1 −xk|
γk+1 +γk

2
− xk −xk−1

|xk −xk−1|
γk +γk−1

2

)
. (3.12)

This method has the important feature that the discrete force balance

NI∑
k=1

Fk =0, (3.13)

is satisfied to machine precision. In practice, we find that while the first method based on
(3.11) works well for a clean interface, the second method based on (3.12) is preferable in
the presence of surfactants.

Next, the delta function associated with the kth node is replaced with a smooth function
that is supported by a rectangular region centered at the kth node. This is done by introduc-
ing the approximation

D2(x)�H(x)≡ 1
16�x �y

(1+ cos x̂)(1+ cos ŷ), (3.14)

for xk −2�x <x <xk +2�x and yk −2�y <y <yk +2�y, where x̂ ≡πx/(2�x), ŷ ≡πy/(2�y),
and �x, �y are the spatial discretization intervals in the streamwise and lateral directions.
Note that the integral of H(x) over the entire xy-plane is equal to unity, as required. Substi-
tuting (3.14) in (3.9) and the result in (3.8), we obtain

ρ
∂u
∂t

+ρ
(

u − 2
ρ

∇µ
)

·∇u =−∇p +µ∇2u +∇µ×ω+B(x), (3.15)

where

B(x)≡−
NI∑
k=1

H(x −xk)Fk. (3.16)

As previously, summation is implied over the infinite repetition of periodic images of the
interfacial nodes.

Having smoothed out the physical properties of the fluid and the singular term on the
right-hand side of (3.8), we compute the evolution of the flow subject to an initial condition
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using a variation of Chorin’s projection method. The algorithm involves a number of elemen-
tary sub-steps based on the constituent evolution equations

ρ
∂u
∂t

=−�p

L
ex +∇µ×ω+B(x),

ρ
(∂u

∂t
+ v ·∇u

)
=µ∇2u, (3.17)

ρ
∂u
∂t

=−∇φ,

where v ≡u − (2/ρ)∇µ, �p is a specified pressure drop across each period of length L, ex is
the unit vector along the x axis, and φ is a projection function, regarded as an approxima-
tion to the non-periodic part of the pressure (e.g., [18,23]). To expedite the simulations, the
second step is further decomposed into the one-dimensionalconvection–diffusion steps,

ρ
(∂u

∂t
+vx

∂u
∂x

)
=µ

∂2u
∂x2

, ρ
(∂u

∂t
+vy

∂u
∂y

)
=µ

∂2u
∂y2

. (3.18)

The first sub-step is executed subject to the streamwise periodicity condition, whereas the sec-
ond sub-step is executed subject to the no-penetration and a properly designed slip-boundary
condition, as will be discussed later in this section (e.g., [18,23]).

The governing equations were integrated in time using a finite-difference method on a
uniform grid. Specifically, the first equation in (3.17) was integrated using the explicit Euler
method, and Equations (3.18) were integrated using the implicit Crank–Nicolson method. The
latter requires solving tridiagonal systems of linear equations for carrying out the y integra-
tion, and nearly-tridiagonal systems of linear equations with two bordering elements due to
the periodicity condition for carrying out the x integration. The solution of these systems can
be found efficiently using the standard or a modified version of the Thomas algorithm (e.g.,
[22]).

Demanding that the third equation in (3.17) delivers a solenoidal velocity field at the end
of a complete time step, we derive a generalized Poisson equation for the projection function,

∇ ·
( 1
ρ

∇φ
)

= 1
�t

∇ ·u∗, (3.19)

where u∗ is the velocity at the end of the convection-diffusion step. The solution is found sub-
ject to the streamwise periodicity condition and the homogeneous Neumann boundary con-
dition at the lower and upper wall. In the computations discussed in this article, the densities
of the lower and upper fluid are identical, and the projection satisfies the Poisson equation

∇2φ = ρ

�t
∇ ·u∗. (3.20)

In the numerical implementation, the linear system arising from the central-differencing dis-
cretization of (3.20) was solved by standard Gauss–Seidel iteration.

To ensure the exact satisfaction of the no-slip boundary condition at the upper and lower
wall at the end of the projection step, advancement over each time step is carried out in
an iterative fashion, where the wall boundary condition for the intermediate velocity at the
y convection–diffusion step is gradually modified in anticipation of the O(�t) slip velocity
introduced in the projection step (e.g., [18,23]). In practice, because the slip velocity is trans-
ferred from the previous step, only one or two iterations are necessary to reduce the numerical
slip velocity down to the level of the round-off error.
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3.3. Marker point motion

Once the velocity field has been updated over a time step, the interfacial marker points are
advanced in time under the action of an interpolated velocity field using Euler’s explicit
method. In the numerical simulations discussed later in this article, the interfacial nodes and
their interpolated offsprings are Lagrangian point particles convected with the fluid velocity.

A widely used method of computing the node velocity is based on Peskin’s [24,16] inter-
polation formula

u(x)=
∑
i,j

H(x −xij )ui,j �x �y, (3.21)

where uij is the velocity at the (i, j) grid point [24]. One weakness of this scheme is the inabil-
ity to produce a spatially uniform field from uniform grid values.

To circumvent this difficulty, we carry out the interpolation using the bicubic B-spline
approximation in the x and y directions, based on the formula

u(x)=
2∑

lx=−1

2∑
ly=−1

ui+lx ,j+ly wlx (ξx)wly (ξy), (3.22)

where the point x lies inside the cell confined between the i and i +1 vertical, and the j and
j +1 horizontal grid lines. The arguments of the interpolation functions are ξx ≡ (x −xi,j )/�x,
and ξy ≡ (y −yi,j )/�y. The uniform B-spline interpolation functions are given by (e.g., [22])

w−1(ξ)= 1
6 (1− ξ)3, w0(ξ)= 1

6 (4−6ξ2 +3ξ3),

(3.23)

w1(ξ)= 1
6 (1+3ξ +3ξ2 −3ξ3), w2(ξ)= 1

6 ξ3.

A distinguishing property of these functions is that their sum is equal to unity for any argu-
ment value, ξ .

3.4. Surfactant transport

The convection–diffusion equation for the surfactant (2.4) is treated simultaneously using a
finite-volume method (e.g., [20,5]). In particular, following or preceding the advancement of
the interfacial nodes, the ordinary differential equations originating from the finite-volume
discretization are integrated in time using a semi-implicit method, where the interfacial veloc-
ity and geometrical properties of the interface are evaluated at the beginning of each time
step.

4. Leveling of an interface

The performance and accuracy of the numerical method described in Section 3 was assessed
by comparing the results of numerical simulations with the predictions of linear stability the-
ory, as well as with the results of simulations based on a boundary-element method for Stokes
flow presented by Blyth and Pozrikidis [5]. By way of carrying out this investigation, we con-
sider the leveling of the interface separating two fluids with equal densities under the action
of surface tension in an otherwise quiescent environment, that is, for vanishing overall stream-
wise pressure gradient and wall velocities. The undisturbed lower and upper layer thicknesses
are h1 =h+y0 and h2 =h−y0, where y0 is the position of the flat interface. The perturbation
is introduced by displacing the interface to a position described by
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y(x, t =0)=y0 + ε h cos kx, (4.1)

where k =2π/L is the wave number, and ε is the dimensionless amplitude of the disturbance.
The initial velocity is taken to be zero within both fluids. Physically, capillary forces imparted
to the fluid by the corrugated interface act as a narrow band of a distributed body force that
tends to restore the flat shape.

First, we consider the motion in the absence of surfactants, setting β =0. Figure 4 shows
the evolution of the interface amplitude, a, plotted against the dimensionless time τ ≡ tγ /(µh)

on a log-linear scale, for viscosity ratios λ ≡ µ2/µ1 = 1 and 0·2. In this graph, the instan-
taneous amplitude has been normalized by the initial amplitude, a0 ≡ εh. The unperturbed
interface is located at y0 =−h/3, yielding a layer thickness ratio r ≡h2/h1 =2, the wave length
of the interfacial wave is L/h=4, and the initial amplitude of the interface is ε =0·20. Unless
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Figure 4. Leveling of the interface under the action of surface tension in an otherwise quiescent environment, in the
absence of surfactants, for h2/h1 =2, L/h=4 and viscosity ratio (a) µ2/µ1 =1 and (b) 0·2. The straight dotted lines
represent the predictions of linear stability theory for Stokes flow.
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noted otherwise, all simulations were conducted on a standard 32 × 16 grid with dimension-
less time step �τ =0·005. Results are presented for several Reynolds numbers, Re≡ρ1γ h/µ2

1,
and two grid sizes. The duplicate results for Re = 50 shown in the figure demonstrate that
increasing the grid size from 32×16 to 64×32 has only a mild effect on the accuracy of the
simulations. The comparison confirms that the salient figures of the motion are well repro-
duced by the low-resolution simulation.

The straight dotted line with slope −0·112744 in Figure 4(a) represents thepredictions of
linear stability analysis for Stokes flow, revealing the existence of a single exponentially decay-
ing normal mode (e.g., [5]). The numerical results for Re=1 are in excellent agreement with
this theoretical estimate, even though the amplitude of the perturbation is not infinitesimal.
As the Reynolds number is raised, the rate of decay of the perturbation is initially reduced.
Physically, the fluid must pick up enough momentum to overcome its inertia. At long times,
the interface exhibits damped oscillations with an angular frequency that depends on the Rey-
nolds number. In the theoretical limit of infinite Reynolds number, the interface will exhibit
undamped oscillations in the form of a standing capillary wave. Similar behavior is observed
for viscosity ratio λ = 0·2, as illustrated in Figure 4(b). The straight dotted line with slope
−0·170458 in this figure represents the predictions of linear stability analysis for Stokes flow,
which is in excellent agreement with the results of the simulations for Re=1. At higher Rey-
nolds numbers, damped oscillations arise.

Next, we consider flow in the presence of a surfactant, and specify that the initial surfac-
tant concentration has a sinusoidal distribution described by

�(x, t =0)=�0

[
1+ ε� cos(kx −φ�)

]
, (4.2)

where �0 is the unperturbed surfactant concentration, ε� is the dimensionless amplitude of
the perturbation, and φ� is the phase-shift of the surfactant concentration wave with respect
to the initial interfacial displacement described by (4.1). Figure 5 shows results of simulations
for layer thickness ratio r =2, unit viscosity ratio, λ=1, surfactant sensitivity parameter, β =
0·5, corresponding to Marangoni number Ma=1, vanishing surfactant diffusivity, Ds =0, and
ε = 0·2, ε� = 0·1, φ� = 0·0. The dotted line in Figure 5(a) represents the prediction of linear
theory for Stokes flow in the absence of surfactants, while the dashed line labeled BEM repre-
sents the results of a numerical simulation for Stokes flow conducted by Blyth and Pozrikidis’s
boundary-element method [5]. The results of the finite-difference code for Re=1 are in good
agreement with those of the boundary-element simulation. Comparing Figure 5 with Figure
4, we find that the surfactant has a significant influence on the dynamics of the motion, espe-
cially at the higher Reynolds numbers considered where oscillations arise. Figure 5(b, c) shows
instantaneous velocity vector fields for Re=1 and 50, respectively, at dimensionless times τ =
10·085 and 10·005, revealing subtle differences concerning, for example, the location of the
center of the viscous eddies mediating the leveling action.

Overall, the results presented in Figures 4 and 5 provide assurance for the reliability of the
immersed-interface method implemented in the finite-difference code, in the absence as well as
in the presence of surfactants.

5. Stability of the two-layer channel flow

Having developed and tested the numerical methods, we turn our attention to the instability
of the unidirectional, two-layer flow. The unperturbed velocity profiles in the upper and lower
layer are given, respectively, by
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Figure 5. Leveling of the interface between two layers in a horizontal channel under the action of surface tension:
(a) decay of the interfacial wave in the presence of surfactants; (b, c) instantaneous interfacial shape and velocity
vector field for (b) Re=1 at time τ =10·085, and (c) Re=50 at time τ =10·005.

ux =− χ

2µ1
(y −y0)

2 + ξ1 (y −y0)+uI , for −h<y <y0,

(5.1)

ux =− χ

2µ2
(y −y0)

2 + ξ2 (y −y0)+uI , for y0 <y <h,

where χ ≡ −∂p/∂x is the negative of the streamwise pressure gradient, y0 is the position of
the undisturbed interface, uI is the interfacial velocity given by
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uI = h1h2

2µ1

1+ r

λ+ r
χ + r U1 +λU2

r +λ
, (5.2)

λ ≡ µ2/µ1 is the viscosity ratio, r ≡ h2/h1 is the ratio of the unperturbed layer thicknesses,
and

ξ1 =−χ h1

2µ1
+ uI −U1

h1
, ξ2 = ξ1

λ
= χ h2

2µ2
− uI −U2

h2
(5.3)

are the interfacial shear rates in the lower and upper fluid.
In one series of simulations, the unperturbed unidirectional flow described by (5.1) was

adopted as an initial condition. To initiate the perturbation, the interface was maintained hor-
izontal by setting ε =0 in (4.1), while a periodic perturbation in the surfactant concentration
was introduced according to (4.2). The associated Marangoni tractions cause the interface to
deform into a sinusoidal wave whose amplitude initially grows, and eventually may grow or
decay depending on the flow conditions determining the stability of the base flow.

Figure 6 illustrates the effect of the Reynolds number, Re = ρ1 |U2 − U1|h/(2µ1), on the
growth of an interfacial wave with wavelength L/h=6 in Couette flow, χ =0, for layer thick-
ness ratio r =2, viscosity ratio λ=0·5, and negligible surfactant diffusivity, Ds =0. The initial
amplitude of the surfactant concentration wave is ε� =0·5, the surfactant sensitivity parameter
is set to β =0·5, and the capillary number is Ca≡µ1�U/γ0 =2, where �U =U2 −U1, and γ0

is the surface tension of the undisturbed interface corresponding to the unperturbed surfac-
tant concentration �0. In these simulations, the dimensionless time step is set to �τ =0·005,
where the dimensionless time is defined as τ =�U t/(2h). All simulations were conducted on
a 48×16 grid with a minimum of 32 adaptively distributed interfacial nodes.

At the initial instant, the amplitude of the interfacial wave is zero, a = 0. Subsequently,
Marangoni stresses cause the interface to deviate from the flat position and develop a grow-
ing sinusoidal wave. Once the interfacial amplitude has grown to a significant level over an
initial start-up period of time, the growth slows down, though the amplitude of the interfacial
wave continues to increase while exhibiting small-amplitude oscillations despite the restoring
action of surface tension. The numerical results for Re=1, represented by the solid line, are in
good agreement with those for Re=0, represented by the dotted line; the latter were obtained
using the boundary-element method for Stokes flow [5]. The results suggest that raising the
Reynolds number slows down the initial growth of the interfacial wave due to the fluid iner-
tia, but has only a mild effect on the growth rate at longer times. We note, in particular, that
the growth curve for Re=50 exhibits a net decline at long times. In fact, a normal-mode sta-
bility analysis [6] reveals that, for the set of conditions presently considered, as the Reynolds
number is raised from the value of unity, the growth rate of the unstable Marangoni mode
increases monotonically, and rises approximately by a factor of 2·5 at Re=50. The superficial
contrast between the numerical and analytical predictions emphasizes the difficulty of assess-
ing flow instability from simulations beginning with an arbitrary initial state.

By way of confirming the destabilizing action of the surfactant and illustrating the nonlin-
ear stages of the instability, we consider an initial condition in which the two layers are qui-
escent, and the Couette flow is established gradually by the impulsive translation of the two
walls. At the initial instant, the interfacial shape is described by (4.1) with ε = 0·2, while the
distribution of the surfactant concentration is described by (4.2) with ε� =0·2, and phase shift
φ� =3π/2. Figure 7 illustrates the evolution of the amplitude of the interfacial wave for layer
thickness ratio r =2, viscosity ratio λ=1·0, capillary number Ca=2, and negligible surfactant
diffusivity, Ds =0. Results are presented for Reynolds numbers Re=1 and 50, and surfactant
sensitivity parameter β =0 and 0·5.
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Figure 6. Effect of fluid inertia on the Marangoni
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Figure 8. Stages in the Marangoni instability for β = 0·5 and (a) Re = 1 at time τ = 5·025 (up) and 8·755 (down),
and (b) Re50 at time τ =5·165 (up) and 9·495 (down).

When a surfactant is absent, β = 0, the interface amplitude decays monotonically under
the action of surface tension for both Reynolds numbers. This behavior is consistent with the
predictions of a normal-mode linear stability analysis, predicting negative growth rates at both
Reynolds numbers [6]. In the presence of surfactant, the amplitude initially decays, and then
it starts growing as soon as the shear flow has penetrated the layers and reached the inter-
face. This behavior is also consistent with linear stability analysis, predicting positive growth
rates for the Marangoni mode at both Reynolds numbers [6]. Figure 8 shows two stages of
the motion for β =0·5, illustrating wave steepening and the onset of an overturning wave. The
simulations were halted when a numerical instability arose due to the high interfacial curva-
ture at the crest and base of the steep wave.

6. Discussion

The Yih instability arises at small but non-infinitesimal Reynolds numbers when the shear rate
jumps across the interface due to differences in viscosity. On the other hand, the Marangoni
instability arises even under conditions of Stokes flow for non-zero, but not necessarily
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discontinuous, interfacial shear rates. The two modes may act synergistically or counterac-
tively in a way that is hard to identify from circumstantial evidence extracted by solving ini-
tial-value problems.

In this article, we have investigated the effect of inertia on the Marangoni instability by
numerical simulation based on the immersed interface method, and found that the Reynolds
number has a mild effect on the growth of interfacial waves. To fully describe the nature of
the instability, a formal linear stability analysis is required. Halpern and Frenkel [4] formu-
lated the normal-mode linear stability problem, and displayed the Orr–Sommerfeld equations
governing the growth of perturbations in the two layers and accompanying boundary and
interfacial conditions. In the second part of the present study [6], numerical solutions of the
eigenvalue problem will be presented, and the stability of the flow will be rigorously assessed.
In particular, the predictions of the linear analysis will be found to be in excellent agreement
with results of numerical simulations conducted by the immersed-interface method for a two-
mode perturbation tailored to correspond to an initially flat interface.
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